Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Chinês | MEDLINE | ID: mdl-38563173

RESUMO

Objective:After selecting NCF2 based on bioinformatics, clinical experiments were conducted to verify the expression of NCF2 in chronic rhinosinusitis with nasal polyps to study its correlation. Methods:The differentially expressed genes(DEGs) between CRSwNP and non-CRS patients were explored using the CRS-related dataset from the gene expression omnibus GEO database. The weighted gene co-expression network(WGCNA) was used for cluster analysis. The expression and cell distribution of NCF2 in the tissues were determined by single gene enrichment analysis(GSEA), immune inflammatory infiltration analysis, and principal component(PCA) analysis. The expression degree of NCF2 in the tissues of the subjects was determined by immunohistochemistry, and the percentage of EOS in the peripheral blood of the subjects was detected and the correlation was analyzed. EOS in the tissues of the subjects were counted under a microscope and compared. Results:①The Venn diagram was obtained by crossing the module with the highest correlation between DEGs and WGCNA to determine the core gene NCF2. ②GSEA analysis showed that NCF2 was significantly related to the immunological processes such as allogeneic rejection and asthma. ③The area under the ROC curve was 1, indicating that NCF2 had diagnostic value for CRSwNP. ④NCF2 was highly expressed in nasal polyps, mainly distributed in monocytes and eosinophils. ⑤HE staining showed that the number of EOS in ECRSwNP tissues and the percentage of eosinophils in peripheral blood were higher than those in nonECRSwNP and control groups. ⑥The immunohistochemistry results showed that NCF2 was significantly expressed in the nasal polyps of ECRSwNP patients, which was higher than that in the nasal mucosa of nonECRSwNP group and control group. ⑦The expression of NCF2 in tissues was positively correlated with EOS count in ECRSwNP group and EOS expression in peripheral blood. Conclusion:The expression of NCF2 is increased in eosinophilic chronic rhinosinusitis with nasal polyps, and it is significantly correlated with the expression of eosinophils in peripheral blood and tissues, suggesting that NCF2 may be used as a basis for the intrinsic classification of ECRSwNP and a reference index for clinical diagnosis and treatment.


Assuntos
Pólipos Nasais , Rinite , Rinossinusite , Sinusite , Humanos , Pólipos Nasais/metabolismo , Rinite/cirurgia , Correlação de Dados , Sinusite/cirurgia , Eosinófilos/metabolismo , Doença Crônica , NADPH Oxidases
2.
J Int Med Res ; 51(4): 3000605231168017, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37114505

RESUMO

OBJECTIVES: To explore the relationship between CADM1 expression and sensitivity to TPF-induced chemotherapy in laryngeal squamous cell carcinoma (LSCC) patients, then investigate its potential mechanisms. METHODS: Differential CADM1 expression was examined in chemotherapy-sensitive and chemotherapy-insensitive LSCC patient samples after TPF-induced chemotherapy using microarray analysis. Receiver operating characteristic (ROC) curve analysis and bioinformatics approaches were used to investigate the diagnostic value of CADM1. Small interfering RNAs (siRNAs) were used to knock down CADM1 expression in an LSCC cell line. Differential CADM1 expression was compared by qRT-PCR assays in 35 LSCC patients treated with chemotherapy, including 20 chemotherapy-sensitive and 15 chemotherapy-insensitive patients. RESULTS: Public database and primary patient data both suggest that CADM1 mRNA is expressed at lower levels in chemotherapy-insensitive LSCC samples, suggesting its potential usefulness as a biomarker. Knockdown of CADM1 with siRNAs led to decreased sensitivity of LSCC cells to TPF chemotherapy. CONCLUSIONS: Upregulation of CADM1 expression can alter the sensitivity of LSCC tumors to TPF induction chemotherapy. CADM1 is a possible molecular marker and therapeutic target for induction chemotherapy in LSCC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , MicroRNAs , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Neoplasias Laríngeas/tratamento farmacológico , Neoplasias Laríngeas/genética , Análise em Microsséries , RNA Interferente Pequeno/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células , Molécula 1 de Adesão Celular/genética , Molécula 1 de Adesão Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA